Math 210B Lecture 27 Notes

Daniel Raban

March 15, 2019

1 Ideals of Extensions of Rings

1.1 The going up theorem

Suppose B/A is an extension of commutative rings. How do ideals of A and ideals of B compare? If we have an ideal \mathfrak{a} of A, then $\mathfrak{a}B$ is an ideal of B. We can go back by sending $\mathfrak{b} \mapsto \mathfrak{f} \cap A$.

Definition 1.1. We say an ideal $\mathfrak{b} \subseteq B$ lies over $\mathfrak{a} \subseteq A$ if $\mathfrak{b} \cap A = \mathfrak{a}$.

If \mathfrak{p} is prime, then $\mathfrak{p}B$ need not be prime.

Example 1.1. Extend \mathbb{Z} to $\mathbb{Z}[\sqrt{2}]$. Then $(2) \mapsto 2\mathbb{Z}[\sqrt{2}] = (sqrt2)^2$. However, if $\mathfrak{q} \subseteq \mathbb{Z}[\sqrt{2}]$ is prime, then $\mathfrak{q} \cap \mathbb{Z}$ is prime in \mathbb{Z} .

Proposition 1.1. Let B/A be an extension of commutative rings.

1. If $\mathfrak{b} \subseteq B$ lies over $\mathfrak{a} \subseteq A$, then A/\mathfrak{a} injects into B/\mathfrak{b} .

- 2. If $S \subseteq A$ is a multiplicatively closed subset and B/A is integral, then so is $S^{-1}B/S^{-1}A$.
- 3. If B/A is integral and A is a field, then so is B.

Proposition 1.2. Suppose B/A is integral. If $\mathfrak{p} \subseteq A$ is prime, then there exists a prime $\mathfrak{q} \subseteq B$ lying over \mathfrak{p} .

Proof. Consider $S_{\mathfrak{p}} = A \setminus \mathfrak{p}$. Let $B_{\mathfrak{p}} := S_{\mathfrak{p}}^{-1}B$; this is integral over $A_{\mathfrak{p}}$. Let $\mathfrak{M} \subseteq B_{\mathfrak{p}}$ be maximal. Then $\mathfrak{m} = \mathfrak{M} \cap A_{\mathfrak{p}}$ is maximal: $A/\mathfrak{m} \to B/\mathfrak{M}$ is an injection, so by the 1st property, A/\mathfrak{m} is a field. So $\mathfrak{p} = A_{\mathfrak{p}}$. Let $\iota : B \to B_{\mathfrak{p}}$. Then $q = \iota^{-1}(\mathfrak{M})$, so \mathfrak{q} is prime. Then $\mathfrak{q} \cap A = \iota^{-1}(\mathfrak{M}) \cap A = \iota^{-1}(A_{\mathfrak{p}})\iota^{-1}(\mathfrak{p}A_{\mathfrak{p}}) = \mathfrak{p}$.

Theorem 1.1 (going up theorem). Let B/A be integral. Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$ be primes of A, and let $\mathfrak{q}_1 \subseteq B$ be lying over \mathfrak{p}_1 . Then there exists a prime $\mathfrak{q}_2 \subseteq B$ with $\mathfrak{q}_2 \supseteq \mathfrak{q}_1$ such that \mathfrak{q}_2 lies over \mathfrak{p}_2 .

Proof. Let $\overline{A} = A/\mathfrak{p}_1$, and let $\overline{B} = B/\mathfrak{q}_1$. Let $\pi : B \to \overline{B}$ be the quotient map. Let $\overline{\mathfrak{p}_2} := \pi(\mathfrak{p}_2)$. $\overline{B}/\overline{A}$ is integral, so there exists aprime $\overline{\mathfrak{q}_2}$ of \overline{B} lying over $\overline{\mathfrak{p}_2}$. Then $q_2 = \pi^{-1}(\overline{\mathfrak{q}_2}) \supseteq \mathfrak{q}_1$. Then $\mathfrak{q}_2 \cap A = \pi^{-1}(\overline{\mathfrak{q}_2} \cap \overline{A}) = \pi^{-1}(\overline{\mathfrak{p}_2}) = \mathfrak{p}_2$ since $\mathfrak{p}_2 \supseteq \mathfrak{p}_1$.

1.2 The going down theorem

Proposition 1.3. Let B/A be an extension, and let B' be the integral closure of A in B. Then for any multiplicatively closed $S \subseteq A$, $S^{-1}B'$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.

That is, integral closure is preserved by localization.

Proof. If $b/s \in S^{-1}B$ is integral over $S^{-1}A$, there exists a monic $f \in S^{-1}A[x]$ f(b/s) = 0. Write $f = x^n + \sum_{i=0}^{n-1} \frac{a_i}{s_i} x^i$ with $a_i \in A$, $s_i \in S$. Set $t = s_0 \cdots s_{n-1}$. Then $(st)^n f(x/ts) \in A[x]$ has root $x = bt \in B'$. So $s^{-1}b = s^{-1}t^{-1}x$ in $S^{-1}B'$.

In commutative algebra, we often study what properties are local. For example, we showed earlier that a module is zero iff its localizations at all maximal or all prime ideals are zero.

Proposition 1.4. Let A be an integral domain. The following are equivalent.

- 1. A is integrally closed.
- 2. $A_{\mathfrak{p}}$ is integrally closed for all prime ideals $\mathfrak{p} \subseteq A$.
- 3. $A_{\mathfrak{m}}$ is integrally closed for all maximal ideals \mathfrak{m} of A.

Proof. Let \overline{A} be the integral closure of A in Q(A). Then $A = \overline{A}$ iff $\overline{A}/A = 0$. This is an A-modules, so this happens iff $(\overline{A}/A)_{\mathfrak{p}} = 0$ for all \mathfrak{p} . Observe that $(\overline{A}/A)_{\mathfrak{p}} = \overline{A}_{\mathfrak{p}}/A_{\mathfrak{p}}$, where $\overline{A}_p = S_{\mathfrak{p}}^{-1}A$ is the integral closure of $A_{\mathfrak{p}}$.

Theorem 1.2 (going down theorem). Let B/A be an integral extension of integral domains such that A is integrally closed. Let $\mathfrak{p}_2 \subseteq \mathfrak{p}_1$ be primes of A, and let $\mathfrak{q}_1 \subseteq B$ be lying over \mathfrak{p}_1 . Then there exists a prime $\mathfrak{q}_2 \subseteq B$ with $\mathfrak{q}_2 \subseteq \mathfrak{q}_1$ such that \mathfrak{q}_2 lies over \mathfrak{p}_2 .

1.3 Integral extensions in extensions of the quotient field

Let A be an integral domain, and let K = Q(A). Let L be a finite, separable extension of K, and let B be the integral closure of A in L. Then

Lemma 1.1.

$$\operatorname{Tr}_{L/K}(B) \subseteq A, \qquad N_{L/K}(B) \subseteq A.$$

Proof. The minimal polynomial f of $\beta \in B$ lies in A[x]. Then $f = x^n - \text{Tr}_{L/K}(\beta)x^{n-1} + \cdots + (-1)^{n-1}N_{L/K}(\beta)$.

Proposition 1.5. There exists an ordered basis $\{\alpha_1, \ldots, \alpha_n\}$ of L/K contained in B^n . Set $d = D(\alpha_1, \ldots, \alpha_n)$ and $M = \sum_{i=1}^n A\alpha_i$. Then $M \subseteq B \subseteq d^{-1}M$.

Proof. Start with a basis $\{\beta_1, \ldots, \beta_n\}$ of L/K. Recall that each $\beta_i = b_i/a_i$ with $b_i \in B$ and $a_i \in A$. So multiplying through by a_1, \ldots, a_n , we have a basis of L/K in B^n .

Given $\{\alpha_1, \ldots, \alpha_n\}$, any $\beta \in L$ has the form $\beta = \sum_{i=1}^n c_i \alpha_i$, where $c_i \in K$. Suppose $\operatorname{Tr}_{L/K}(\alpha\beta)$ in A for all $\alpha \in B$ (e.g. this holds if $\beta \in B$ by the lemma). Consider $A \ni \operatorname{Tr}_{L/K}(\alpha_i\beta) = \sum_{j=1}^n c_j \operatorname{Tr}_{L/K}(\alpha_i\alpha_j)$. Note that $\operatorname{Tr}_{L/K}(\alpha_i\alpha_j)$ is the (i,) entry of $Q = (\operatorname{Tr}_{L/K}(\alpha_i\alpha_j))$. Then $Q^* = \operatorname{adj}(Q)$, and $QQ^* = dI_n$. So we get

$$QQ^* \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} dc_1 \\ \vdots \\ dc_n \end{bmatrix} \in A^n.$$

So we get $d\beta = d \sum_{i=1}^{n} a_i \alpha_i = \sum_{i=1}^{n} A \alpha_i = M$. Then $dB \subseteq M$, so $B \subseteq d^{-1}M$.

Remark 1.1. If B is Noetherian, then M is a finitely generated torsion-free B-submodule of L. If B were a PID, then we would get that M is free.

Now assume K/Q is a finite extension. We could define $\operatorname{disc}(K) = \operatorname{disc}(\operatorname{basis} \operatorname{of} O_K/\mathbb{Z})$. This is actually independent of basis.